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Abstract-We extend earlier studies of closed-form and asymptotic solutions of the problems of
transverse twisting and membrane shearing of shallow spherical shells with small circular traction
free holes or rigid inserts. Our first extension concerns a modified form ofthe relevant exact solution
of the shell equations, so as to take advantage of the static-geometric duality property of linear
shell theory. As a consequence we observe that the results for two of the four previously considered
problems can be seen as the static··geometric duals of the other two. The second extension concerns
the formulation of a general boundary value problem, with the problems of the hole and the rigid
insert as special cases. Furthermore, on the basis of this formulation we find, as a particularly simple
boundary value problem of physical interest, the problem ofa hole the edge of which is transversely
fixed. The asymptotic properties of the twisting and shearing solutions for this case are shown to
be intermediate, in a specific sense, to the previously established order of magnitude properties for
the free hole or rigid insert cases.

1. INTRODUCTION

We are concerned in what follows with a generalization of known results, as well as with
an improvement of the solution technique, for the four problems of transverse twisting and
membrane shearing of an isotropic homogeneous shallow spherical shell having either a
small circular hole or rigid insert (Reissner, 1980a, b,c, 1981, 1986; Reissner and Reissner,
1982).

We recall that the earlier analysis, prompted by the possibility of formal exact solutions
for manageable, physically interesting illustrations of the applications of the theory of
shallow shells, has led to results which were, in part, unexpected. While the effects of a
circular hole for the problem of transverse twisting, and of a rigid insert for the problem
of membrane shearing, were found to be similar to those for the corresponding problems
of a flat plate, this turned out not to be the case for the membrane shear problem for shells
with a hole and for the transverse twisting problem for shells with a rigid insert. For these
latter problems, unexpectedly large stress concentrations were found along with unexpected
novel effects concerning interior membrane and inextensional bending solution contri
butions. These effects were shown to depend on sufficiently large values of a dimensionless
parameter jl involving the shell radius R, the hole or insert radius a, the bending stiffness
coefficient D and the stretching compliance coefficient B, in the form

(1)

In this paper, we consider a more general problem with boundary conditions which
contain edge conditions for the problems of the hole and for the problems of the rigid insert
as special cases. In addition, we improve upon the solution technique used in Reissner
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(1980a,b,c, 1981, (986) and Reissner and Reissner (1982) by using a modified form of the
general solution of the shallow spherical shell equations, such that the two basic variables,
the normal displacement wand the stress function K, are treated in a symmetrical fashion.
The advantage of this symmetrical treatment is the possibility to realize additional sym
metrization associated with the static-geometric (s-g) duality oflinear shell theory, as first
observed in Gol'denveizer (1940) and extended in Lur'e (1961) and Wan (1968). A specific
consequence of this duality is a formulation of the displacement conditions at the edge of
a rigid insert as the s-g duals of the traction conditions at the edge of a hole. This, in turn,
leads to a recognition of the possibility of deducing two of the four earlier solutions for the
shell with hole or rigid insert directly as the s-g duals of the other two solutions, thereby
making it possible to simplify the discussion of the four problems treated previously as well
as the related problems for shells with an elastically supported edge to be analyzed herein.

The new problem treated in this paper makes possible a study of the transition from
problems with the usual magnitude of stress concentration for a flat plate to those with
much higher magnitude for shells in the range J.l » I.

2. THE DIFFERENTIAL EQUATIONS

With (r, ()) as polar coordinates in the base plane of the shallow spherical shell of
radius R, we have, in terms of tangential and normal displacement components {u, w},
stress resultants N and stress couples M, the following constitutive equations, essentially
as in Reissner (1946),

with

and

W
8rr = u,.,+ R'

1 w
8eo = ~ (uo 0+u,) + 'R-'r . (2b)

with

In these, VN and VM are the effective Poisson's ratios for stretching and bending actions,
with VN = VM = V, B = l/Eh, and D = Eh 3/12(1-v 2

) for homogeneous isotropic shells. We
will continue to distinguish vN from vM only when the distinction facilitates applications of
the s-g duality.

In the absence of surface loads, satisfaction of the equations of tangential force
equilibrium is accomplished in terms of a stress function K upon setting,

1 1 (K o)N rr = K,+ zK ee , Nee = K rr , N,e = Ne, = - -' .r' r .. r .,
(4)

The two scalar moment equilibrium equations without surface loads give as expressions for
the transverse shear resultants
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2 D 2Qr = - D(V W) r> Qe = - (V w) e·oro
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(5)

The normal force equilibrium equation without surface loads and a compatibility
equation for strains based on the strain displacement relations in eqns (2a, b) imply the
satisfaction of the following system of two simultaneous differential equations for the stress
function K and the normal displacement component w (Reissner, 1946)

(6)

The symmetric appearance of K and w in these equations is one of the consequences of the
s-g duality of shell theory [see Wan and Weinitschke (1988) for a detailed description].
With K and B as the s-g duals of wand - D, respectively, each of the two equations in (6)
is the s-g dual of the other equation. That is, we can obtain one equation from the other
by replacing w, K, D and B by their dual quantities K, w, - Band - D, respectively. With
the additional dual relations listed in Table 1, the three stress-strain relations [eqn (2a)]
with the resultants expressed in terms of K by eqn (4), become the s-g duals of the three
stress-strain relations in eqn (3a) expressed in terms of w through use of eqn (3b).

To take advantage of the s-g duality, we now express the general solution of the system
(6) in terms of two harmonic functions <p and t/J together with a third function Xin the form

(7)

with Xas the solution of

(8)

and with the coefficients A 0, A], Bo, B] related by

(9)

In Reissner (l980a,b,c, 1981, 1986) and Reissner and Reissner (1982), it was' stipulated
thatA o = 1andBo = 0, and therewithAl = oand B] = -RD for the problem oftransverse
twisting as well as for the problem of membrane shearing. In what follows, the x-terms in
eqn (7) will instead be taken in the form

AoX+AIV2X = X+ R j!iBV2 X,

BoX+ B ]V2X = J"Ps(X- R j!iBV2 XJ

for the problem of transverse twisting, and in the form

A oX+ A IV2 X = A(X- Rj!iBV2 X),

BoX+BI V2x = (X+ R..jDiJV2X)

Table I. Static-geometric dual quantities

K

w

(lOa)

(lOb)

(lla)

(llb)
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for the problem of membrane shearing, to bring out the s-g duality inherent in these
problems.

3. UNIFORM TRANSVERSE TWISTING AND MEMBRANE SHEARING OF
A SHALLOW SPHERICAL SHELL

Given the well-known classical formulas for transverse twisting and in-plane shearing
of a flat plate,

(12)

where x = r cos 0 and y = r sin 0, we have, as a consequence of the relations V 2wp = 0 and
V2Kp = 0, that wp and Kp are also solutions of the corresponding problems for a shallow
spherical shell.

With eqn (7) as the general solution of the shell eqns (6), it is then possible to obtain
closed-form solutions for problems of stress concentrations due to a circular hole or a rigid
insert, similar to the classical solutions for the corresponding flat plate problems. Apart
from the effect of shell curvature on the numerical values of stress concentration factors,
the results for the shell problems in Reissner (1980a, b, c, 1981, 1986) and Reissner and
Reissner (1982) were found to be of particular interest because of the following aspects of
the analysis. While the solutions of shell problems for "sufficiently thin" shells were known
previously to consist ofedge zone solution contributions and interior solution contributions,
with the latter being either of the "membrane" type or of the "inextensional bending" type,
some of the present stress concentration problems were of a more intriguing nature. The
interior solution contribution for these problems was such that the shell interior was
subdivided into three domains. One of these was of the inextensional bending type, a second
was of the membrane type, with a third (transition) domain in which inextensional bending
and membrane actions were of equal significance.

The stress concentration problems with the aforementioned unusual three-domain
property turned out to be the ones associated with surprisingly large stress concentration
factors, compared to the problems without the three-domain property. For the two trans
verse twisting problems, the one with a rigid insert is of the three-domain type and the one
for the circular hole is of the usual one-domain type. The opposite is true for the two
membrane-shear problems. In what follows we formulate and solve a more general problem
in a way to make possible a study of the transitions from problems of the unusual kind to
problems of the usual kind.

Consider a shell with outer boundary r = 00 and inner boundary r = Q. For sufficiently
large values of r, the solution should be independent of what is prescribed for r = Q. We
may therefore stipulate, on the basis of eqn (12), as conditions for the outer boundary

r -> 00: w = hr2 sin 20, K = 0

for the problem of transverse twisting, and

r -> 00: w = 0, K = -1Sr2 sin 20

(13)

(14)

for the problem of membrane shearing. The curvature parameter r = T/2D(1 - vM) is
introduced here as the s-g dual of - S so that the two conditions in eqn (14) are now the
s-g duals of the two conditions in eqn (13).

The corresponding conditions for the edge of a circular hole or rigid insert were
previously stated in the form

r = Q: N rr = N re = Pr = M rr = 0

where Pr = Qr+Mre,e/r, and

(15)
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r = a: ur = ulJ = W = w,r = 0,
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(16)

respectively, For our subsequent analysis, we will re-state these conditions in terms of W

and K.
With eqns (3), (4) and (5), the traction-free conditions in eqn (15) are satisfied by

requiring

(l7a, b)

(17c)

(l7d)

Equations (17a, b) have natural physical interpretations. The left-hand side of eqn (l7b) is
the resultant force in the direction tangent to the edge r a along the edge curve. In the
absence of this resultant tangential force, the left-hand side of eqn (17a) is the resultant
torque along the edge r a turning about the normal of the midsurface of the shell.

Of the vanishing displacement conditions in eqn (16), the last two are already in terms
of wand w" and in the form of the s-g duals of eqns (17a, b). In order to obtain the s-g
duals of eqns (17c, d), we make use of the fact that the conditions of vanishing Ur and UIJ,

in conjunction with the conditions of vanishing wand w,n turn out to be equivalent to two
conditions in terms of membrane strains, in the form (Wan, 1968)

(18a, b)

That eqn (18b) is the dual of the third relation in eqn (15) follows from the fact that the
moment equilibrium equation (rM,r>,r - M lJe +MrlJ,1J = rQr implies the relation, rP, =
(rMrr>,,-MIJIJ+2MrlJ,lJ' Accordingly, the auxiliary variable elJ has the role of the s-g dual
of P, (Wan, 1968; Wan and Weinitschke, 1988).

Upon expressing the strain conditions (18a, b) in terms of the stress resultants in eqn
(4) with the help of eqn (2), we have the displacement conditions (16) as s-g duals of the
traction conditions in eqn (17) in the form

(19a, b)

(19c)

(l9d)

Given that the problem of transverse twisting ofa shell with a circular hole in Reissner
(1980a, 1981), henceforth designated as the TH problem, is governed by the two partial
differential equations (PDE) in eqn (6), the far field conditions (13) and the edge conditions
(17), we observe that the s·_g dual of this boundary value problem (BVP) consists of the
same two PDEs together with the far field conditions (14) and the edge condition (19). This
dual BVP is just the BVP for the problem of membrane shearing of a shell with a rigid
circular insert in Reissner (198Oc, 1986), henceforth designated as the SI problem. Its
solution can therefore be obtained from that for the TH problem in Reissner (1980a, 1981)
without a separate analysis or calculation by an application of the s-g duality rules, Le. by
replacing all quantities in the solution in Reissner (l980a, 1981) by their s-g dual quantities.
Similarly, it can be seen that the problem of transverse twisting of a shell with a rigid insert
(TI), as analyzed in Reissner (l980c, 1986), is the s-g dual of the problem of membrane
shearing ofa shell with a circular hole (SH) in Reissner (1980b, 1981) and its solution could
therefore have been obtained directly from the results in Reissner (1980c, 1986).
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4. A CLASS OF ELASTIC SUPPORT EDGE CONDITIONS

The form of eqns (17) and (19) suggests that we consider the following system of
conditions at r = a, which contains both eqns (17) and (19) as special cases;

(20a)

(20b)

(20c)

(20d)

In this system, II. and Pare dimensionless weighting factors which remain to be chosen.
Without loss of generality, it may be assumed that aJi+a;; = 1 and 2PJ;+f3;; = 1. Fur
thermore, by considering Pdi and Psjas the s-g duals of -as; and -adj, respectively, the edge
conditions (20c, d) become the s-g duals of the edge conditions (20a, b).

The two conditions (20a, b) are the conventional elastic-support conditions for trans
verse deformations,

(21)

Equations (20c, d) describe a certain type of in-plane elastic-support. The meaning of eqn
(20d) is that the hoop strain at a point along the r = a boundary is proportional to the
resultant tangential force at that point. The meaning of eqn (20c) is that the effective
curvature change eo [see eqn (18b)] along r = a is proportional to the resultant torque
turning about the normal to the midsurface, when there is no tangential resultant edge force
contributing to that torque.

Instead of a duality between two sets of four conditions (each set associated with a
different physical problem) as in eqns (17) and (19), we now have an internal duality
between two sets of two conditions, so that the set of four conditions in eqn (20) for the
elastically supported shell is its own dual.

It is convenient from here on to introduce a dimensionless coordinate p = ria and to
consider the Laplace operator as involving p rather than r. The function X in eqn (7) is now
subject to the differential equation

(22)

with Jl as in eqn (1). For Jl » 1, the singular perturbation structure of eqn (22) implies that
Xis significant only near an edge of the shell.

We take account of eqns (10), (11) and (12), now for p --. 00, by writing with suitably
redefined potential functions ¢ and ljJ

(23a,b)

and

(24a, b)

where

(25)

It follows from eqn (22) that
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(26)

Introduction of the coefficients p./ and P.s in eqns (23b) and (24b), with exponents t and s
which remain to be chosen, is not a necessity but turns out to be helpful in connection with
the asymptotic consideration of the problems of twisting and shearing in the range I « p..
Note that with {11 +, p'r, X+, <Pro t/Jr} as the s-g duals of {11-, P.s, X-, t/Js, <Ps}, WT and KTare
now the s-g duals of Ks and w" respectively.

On the basis of eqns (23) and (24), and with an anticipation of the properties of the
solution contribution X, the conditions (13) and (14) can be written in the form

{
<PT"" p2 sin 2e,

<Ps "" 0,

t/JT"" 0,

t/Js"" p2 sin 2e,
(27a)

(27b)

With this, and in view of the homogeneity of the conditions in eqn (20), we will have as
expressions for <PT' t/JT, <Ps and t/Js

and, on the basis of eqn (22), as an expression for X

X = [csK2(Ap)+csK 2{Ip)]sin2e == X{p)sin2e

(28a, b)

(28c, d)

(29)

where A = jip. = p.{l +i)/j2, and Cs = C3+ic4 with complex conjugates Xand cs.
With r replaced by p and with <P, t/J and X proportional to sin 2e, the boundary

conditions at p = I in eqn (19) may now be written as

asdl1 +p.2X,~ +4(1-VM){<PT.p- <PT+X,; -X +)] +tXdl [<PT+X +] = 0, (30a)

as2[11 + p.2X- + (l-vM){<PT,p -4<PT+X,; -4X +)] +<Xd2 [<PT,p +X;] = 0, (30b)

- Pddl1 .. p.2X,; +4{1 + VN){P.t{t/JT,p - t/JT) + (X,~ -x -)}] + Psdp./t/J T+ X-] = 0, (30c)

-Pd2[11_P.2X+ +(1 +VN){P.t{t/JT,P-4t/JT)+{X,; -4X -)}]+PdP./t/JT,P+X,~]= 0, (30d)

for the problem of transverse twisting, and

asl [11 +p.2X,; +4(1- VM){P.S{<PS,p - <Ps) + (X,; -x +)}] +adl [p.s<ps+X +] = 0, (3Ia)

<Xs2[11 +p.2X + (1- vM){P.S(<PS,p -4<ps) + (X,; -4X +)}] + ad2 [p. 2<ps,p + x,t] = 0, (31 b)

-Pdl [11_P.2 X,; +4(1 +VN)(t/JS,p-t/Js+X,~-X-)]+Psl[t/JS+X -] = 0, (31c)

- Pd2 [11- p.2X+ + (1 +VN)(t/JS,p -4t/Js+X,; -4X -)] + Ps2 [t/Js,p +X,;] = 0, (31d)

for the problem of membrane shearing.
The introduction of eqns (28) and (29) into eqn (30) or eqn (31) leads, in both cases,

to a system of four simultaneous equations for the four constants of integration C 1> C2, C3

and C4'

5. STRESS RESULTANT AND STRESS COUPLE CONCENTRATION FORMULAS

Our principal interest, insofar as applications of the foregoing are concerned, has to
do with results pertaining to stress concentrations along the edge r = a. The direct stress
concentration factors for the problem of membrane shear have previously been defined in
the form
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(32a, b)

and the bending stress concentration factors for the problem of transverse twisting in the
form

(32c,d)

For the definition of bending stress concentration factors k~Hand k~I for the membrane
shear problem and the direct stress concentration factors, k~H and k~I for the transverse
twisting problem, we limit ourselves here, as in Reissner (1980a, b), to the establishment of
results based on the assumption ofa linear distribution of midsurface parallel stresses across
the thickness of the shell, so as to have

SH 6M~r (l, n/4) e H _ hNJr (l, n/4)
kh = hN~Noo,n/4)' m - 6MJr(00,n/4)

and

k SI _ 6M~:(l, n/4) FI _ hN~(l, n/4)
h - hN~:(oo,n/4)' m - 6M:/(oo,n/4)

where we note that the s-g dual of k~H is not kJI since

[
N~r(1, 1[/4) ] _ K;"I(l, n/4~.~ _ [M;"I(1, n/4) -vMMJJ(I, n/4)]

s-g dual SH - TI ) - TI / TI )] .N oo (00,n/4) K,,(oo,n/4 [M,,(oo,n 4)-vMM oo (oo,n/4

(32e, f)

(32g, h)

(33)

Given that MJHoo, n/4) = -M;"I(OO, n/4) and Kee(a,O) = [aw.,(a, 0) +w,oe(a,0)]/a 2
= 0 so

that MJJ(I, n/4) = vMM;"I (1 , n/4), eqn (33) becomes

(34a)

Similarly, we obtain from straightforward calculations the following s-g dualities;

TH l-vN SI
a-g dual [k m ] = - ~3~~kh ,

s-g dual [kJH] (1-vN)k~l,

where we have made use of see(a, 0) = 0 for a rigid insert.

6. ASYMPTOTIC ANALYSIS FOR LARGE VALUES OF J1.

For sufficiently large values of fl., we may again approximate eqn (22) by

X,pppp + fl.4 X = 0,

(34b)

(34c)

(34d)

(35a)

since we expect a sharp gradient in the radial direction near the edge. The solution of eqn
(35a) with appropriate behavior for p --+ 00 is
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From eqn (35b) and eqn (28), we obtain

where c = cos {t( and s = sin {t(, with

2161

(35b)

(36)

(37)

(38)ttj2[C3 ( -1 +11±)+C4(l +11±)].

Upon substituting eqns (37), (38), (28a) and (28b) into eqns (30) and (31), both sets of
(asymptotic) boundary conditions become four simultaneous equations for the deter
mination of the four constants of integration Ct. C2, C3, C4'

In this section, we consider two problems which have been investigated previously.
Our concern with them here is to show the s-g, duality between the two problems which
had not previously been indicated. Two other problems for which the factors of stress
concentration are of order {t, rather than of order {to and {t2 as in the earlier problems
(Reissner, 1980a,b,c, 1981, 1986; Reissner and Reissner, 1982), will be analyzed in the
next section.

6.1. Effect ofa rigid inclusion for the problem of transverse twisting
Setting Psi = asi = 0 in eqn (30) and considering the order of magnitude relation

X,p = O({tX), we obtain from eqn (30), except for terms of relative order 1/{t2, and the
expressions for <p and !/J in eqn (28a)

11- {t2 X,; +4(1 +VN ){t(!/Jr,p -!/Jr) = 0, <Pr+X+ = 0

11-{t2X++(1+vN){t(!/Jr,p-4!/Jr) =0, <Pr,p+X.; =0

(39a, b)

(39c,d)

for p = 1. We set t = 2 in the above to balance the two types of terms in eqns (39a) and
(39c) and use two of the relations in eqn (39) to eliminate X+(1,O) and X,;(I, 0) from the
other two to obtain

at p = I for the determination of the two constants of integration c I and c 2 in the interior
solution contributions. With <Pr(l,O) and !/Jr(l,O) satisfying eqn (40), we subsequently
obtain the two constants C3 and C4 in X, except for terms of relative order l/{t, with the help
of the two conditions

p = I: X+ ,.... -<Pr, X,;"'" o. (41)

We now have as expressions for the resultant and for the couple which enter into the
stress concentration factors,

and
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x+ (I, 0)

JiJiJ
(42b)

Here we have used the relation V2K = Nrr +N oo with Noo(l, 8) = VN Nrr(l, 8) since eoo = 0
at p = 1. The expressions (42a, b) imply bending and membrane stress concentration factors
of the order of magnitude Ji2 for isotropic shells with the expressions for kil and k;,/
obtained from eqns (32d, h) in the form;

( I ~)
'4 '

(43a)

(43b)

6.2. Effect ofa hole for the problem ofmembrane shearing
The traction-free conditions at r = a correspond to !Y.di = fJdi = 0 in eqn (31). With 4J

and ift now as in eqn (28b), we have as asymptotic boundary conditions at p = I for this
case

1J+Ji2X.; +4(1-VM)Ji2(4JS. p 4Js) = 0, ifts+X- = 0,

1J+Ji2X-+(l-VM)Ji'(4Js. p-44Js) =0, ifts.p+X.P =0.

(44a, b)

(44c,d)

Upon setting now s = 2, again to balance terms in eqns (44a, c), we obtain as two boundary
conditions for 4Js and ifts

and then as boundary conditions for X·· , except for terms of relative order I jJi,

(46)

With M rr = 0 and N rr = 0 for p = 1, we now have the relevant stress concentration quantities

Moo(l, 8) = (I +VM)DV2ws - ~SJi2(1 +vM)JDBX (1,0) (47a)

Noo(l, 8) = V 2Ks = -!SJi2X+(l,8). (47b)

These expressions again imply bending and membrane stress concentration factors of order
of magnitude Ji2, with the following asymptotic expressions for k~H and k~H obtained by
the s-g duality with the help of eqns (33) and (43) ;

(48a)

(48b)

consistent with the results of Reissner (1980b, c).
We refer to Reissner (198Oc, 1986) for a discussion of the peculiar near and far field

behavior of the interior solution of the foregoing two problems, involving the transition to
and from, and the coexistence of inextensional bending and membrane state domains.
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7. SHELLS WITH AN INNER EDGE TRANSVERSELY FIXED AND TANGENTIALLY FREE

Because of its relative simplicity and because the asympototic results for this class of
problems are intermediate relative to the previously found 0(1) and 0(f"t2) behavior, we
consider in this section the special case IXs I = IXs 2 = f3dl = f3d2 = O. We may evidently stipulate
t s = °for the values of the exponents in eqns (30) and (31), which then reduce to

<P.p+X,; =0, !/J,p+X,~ =0

<P+X+=O, !/J+X-=O

(49a, b)

(49c,d)

for (<p,!/J) = (<Ps, !/Js) as in eqns (28c,d), as well as for (<p,!/J) = (<PT,lflr) as in eqns (28a, b),
Note that the conditions (49b, d) [corresponding to K(l, e) = K,p(l, 0) = OJ imply that

the edge p = I of the shell is tangentially traction-free. At the same time, the conditions
(49a, c) stipulate the vanishing of transverse edge deflections and of the edge slope of the
shell [corresponding to w(l,e) w,p(l,e) = OJ. Hence, we have effectively a (tangential)
roller-support at the edge r = a.

We may use eqn (38) to deduce from eqns (49a, b)

(50a, b)

for a leading term approximation, and use eqn (37) to deduce from eqns (49c, d)

(50c, d)

From the four relations in eqns (50a-d), we obtain as boundary conditions for the interior
solution contributions <p and ljJ ;

I
<p + h (t/J,p - <p,p) = 0,

....;2J1.
(5la, b)

For the problem of transverse twisting with <p = <PT and t/J = !/JTdesignated as the TR
problem, it follows from eqns (5Ia, b) that, except for higher order terms in I/J1.,

I
P = I: A,T = 0, ./, - A,'I' 'I'T- h 'l'T,p

y2J1.

and, therewith,

and, in accordance with eqns (50a, b),

(52a, b)

(53a, b)

(53c, d)

Expressions for the relevant stress concentration quantities for this TR problem are
now

M;,R(l,O) = -DV2WT(l,e) = 1DTJ1. 2x-(l,e)

-1DTJ1.2(C3+ C4) = -j2DTJ1. = -TJ1. (54a)
j2(l-vM )

in view of eqns (23a), (26) and (53c, d), and
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(54b)

in view of eqns (23b), (26) and (53c, d). It is apparent that, for this case, we encounter stress
concentration factors of order of magniude J1 for isotropic shells with sufficiently large
values of J1, rather than of order J1 0 or J12,

e
b
R = M~R(l,n/4) __ J2J1 TR hNJeR(l,n/4) A+2VN

M TR ( /4) I ,km =6MT
rr

R (00,'Tr/4)'- 3-3v
M

J1 · (54c,d)rr 00, n -VM "

For the problem of membrane shearing with roller support (designated as the SR
problem) with cP = cPs and ljI = ljIs in accordance with eqns (28c, d), we can proceed as in
the TR problem above and obtain asymptotic results analogous to eqns (53) and (54).
However, the same results can be written down immediately by appealing to the s-g duality
between the SR problem and the TR problem. In particular, we obtain from the s-g duals
of eqn (52a, b) a leading term asymptotic form of eqns (49c, d),

I
p = I: ljIs = 0, cPs = ~~ljIs.p.

J2J1

Correspondingly, we have from the s-g duals of eqns (53a, b) [see also eqn (28)]

and, from eqns (53c, d) [see also eqn (36)),

The s-g duals of M~R (1, 8) and NJ: (1, 8) are

(55a, b)

(56a, b)

(56c, d)

(57a, b)

With df(1,8) = BN~f(l,8) and K~rR(l, 8) = M~rR(l, 8)/D, we then have as expressions for
the relevant stress concentration quantities

(58a, b)

with

(59a, b)

In contrast to the results for the two problems in Section 6, we now have, from eqns
(53) and (56), inextensional bending and membrane states throughout the exterior of the
edge zone of roller supported shells for the problem of twisting as well as for the problem
of shearing, respectively.
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